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Abstract

We investigate the radial manifolds %, generated by a linear combination of n radial
functions on RY. We consider the best approximation of function classes by the manifold %,,.
In particular, we prove that the deviation of the manifold £, from the Sobolev class Wz'"d in
the Hilbert space L, behaves asymptotically as nfﬁ. We show the connection between the
manifold %, and the space of algebraic polynomials 2, of degree s. Namely, we prove there
exist constants ¢; and ¢; such that the space 2, is either contained or not in 2, as n>>cys?!
or n<cys?!, respectively.
© 2002 Published by Elsevier Science (USA).

1. Introduction

In this work, we investigate properties of the manifold %, of finite linear
combinations of radial functions. The approximation of multivariable functions by
the manifold £, is also studied.

Let a be some point in the d-dimensional space R?. A radial function with the fixed
center a is defined as a function on R of the form g,(x) = g(|x — a|*), where xeR,

g: R—R,and the quantity |x| = \/x} + - + xf, is the Euclidean norm of the point x.
Let .7 be some subset in R?. Consider the linear space of radial functions

(/) = spanig(|x — a’): ae s/, ge C(R)}, (1)
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where a runs over the set .o/ and ¢ is any continuous functions on R. For a fixed
natural number n consider the subset in 2(.</):

Ry = U{%(ﬂ) card o/ <n},

which is the union of all sets Z(.«7), where .o/ runs over all possible subsets in R? of
cardinality at most n. Note that unlike the space #(.<7), the set £, is not a linear
space. We will therefore call %, a radial manifold.

Let D be a compact set in the space R?. Consider the Hilbert space L,(D) of
square-integrable functions defined on D and norm

Wil = ( [, de)l/z.

We denote the ball of radius ¢ in RY by BY(a) = {x = (x|, ..., xq): Zf-lzl x?<a*}.
In the sequel we will mainly consider the unit ball BY(1). We simplify the notation
somewhat by setting B = BY(1) and L, = Ly(B%).

For any two sets W, H c L, we define the distance of H to W by

disttW,H, L) = sup dist(f,H, L,),

few
where dist (f, H, Ly) = infjcp ||f — Al
Let p = (py,...,p;) be a multi-index vector, that is, p is the vector with non-

negative integer coordinates, |p| = p; + -+ 4+ p,. Introduce the differential operator
9r = 6""/8‘“)(1 ...0Pdx4. Let r be any natural number. In the space L, we consider
the Sobolev class of functions

,.d .
Wé = {f HfHW£d< 1},
where the norm is defined as
A llype = M1, + max 1D°f 1],

Let ¢, and ¢y, ¢y, ... be positive constants depending solely on the parameters r and
d. For two positive sequences a, and b,, n = 0,1, ... we write a,=b, if there exist
positive constants ¢; and ¢, such that ¢;<a,/b,<c; foralln=0,1,... .

In [20] a similar result was proven about best approximation by ridge functions. If
A, 1s the manifold consisting of arbitrary linear combinations of n ridge functions,
that is

n
Hy = {Z gr(x - ar): areR?, gkeC(R)},
k=1
then the deviation of the Sobolev class Wzr’d from 27, satisfies the asymptotics
dist(W5 Hy, L) =<n 1. 2)

A series of works on the density of ridge and radial manifolds in functional spaces
is considered by Agranovsky and Quinto [3], Agranovsky et al. [2], Lin and Pinkus
[16,17], Pinkus [36]. The approximation properties of ridge manifolds were studied in
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Barron [4], DeVore et al. [13], Maiorov [20], Maiorov and Meir [22]. Makovoz [27],
Mhaskar and Michelli [29], Mhaskar [28], Oskolkov [32], Petrushev [33], Pinkus [37],
Temlyakov [46]. In Gordon et al. [14] the results about best approximation by ridge
functions in the Banach space L, are considered. See also Pinkus [38] for a review of
this theme.

The approximation of functions by radial waves was considered by Buhmann
[7,8], Light and Wayne [15], Mhaskar et al. [30], Pinkus [35], Bumann, Dyn and
Levin [11], Schaback [41,42], Bejancu [6], Maiorov [21].

2. Main results

The main part of this paper investigates approximations of functions in the
Sobolev class using a manifold of radial functions #,. We obtain upper and lower
bounds, which are asymptotically equal, on the deviation dist(Wg’d,%,,Lz) of the
Sobolev class from the manifold £, in the space L,.

We will prove that an upper bound for this deviation is attained by a manifold of
radial functions #(.«7,) with some fixed collection of n center points independent of
the approximating function. That is, for every n there exists a collection of points
o, ={ay, ...,a,} in RY such that the manifold

R(Aty) = R(ay, ....a,) = span{g(|x — a;]*): i=1,....n, ge C(R)}
realizes the optimal estimate
dist (W5, R, Ly) = dist(Wy*, R(A,), La).

Note that if we take the points ay, ..., a, sufficiently large in modulus then the upper

bound in the approximation problem is easily reduced to the upper bound in

approximation by ridge functions. That is, let g be any continuous function on R and
2a

a be a fixed non-zero vector in RY. We set @ = —idl and introduce the function

2
eq(x) = % Then the radial function may be rewritten as

g(|x —a') =g(x* = 2x - a+la*) = g(lal(ea(x) +x-a+al))
=h(x-a+ e,(x)),
where / i3 some continuous function on R. Since for sufficiently large |a| the function
£4(x) is sufficiently small on the unit ball B then the function /(x - @+ &,(x)) and

hence the function g(|x—al’) is almost a ridge function. Thus by using
approximation by ridge functions (see (2)) we obtain this next claim: for any

natural n there exist vectors aj, ..., a, with a sufficiently large modulo in R? such that
the following estimate is true:
_r
diSl(W;’d7%(al’ ...7an),L2)<CI’lid*17 (3)

where ¢ is dependent only on r and d. We will also show that for the optimal
approximation of the class Wg’d we can also take center points ay, ...,a, not of a
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large modulus. In the next theorem we embark upon two problems. We show that
for obtaining estimate (3) it suffices to take the centers ay, ..., a, on the unit sphere.
We also prove that these points are asymptotically optimal points for the
approximation of the Sobolev class by the manifold %,,.

Theorem 2.1. Let d>2, r>0 and n be any natural numbers. Then

1. there exist points ay, ..., a, on the unit sphere S~ such that

r

dist( Wzr’d, R(ay, ..., ay), L) <cin d-1,

2. for any points ay, ...,ay in the space R? the following lower estimate is true

. _r_
dist( Wz"d, R(ay, ...,ay), Ly) =con d-1.

Here ¢y and ¢, are dependent only on r and d.

Note that Theorem 2.1 can also be extended to general compact domains D by use
of standard extension theorems, as in [1].

We add two consequences resulting from Theorem 2.1.

Let s be a natural number. Consider the space

Pis = span{xll‘1 --~x5”: |kl = ki + -+ + ka<s}

consisting of all algebraic polynomials on R? with real coefficients of degree at most
s. Denote by .ng,m the subspace of #2;, consisting of all homogeneous polynomials
of degree s, i.e., 9’23.“‘ = span{x"’ ~~~x§" D|k| = s}. Let B2qs = {pePas:|Ipll;, <1}
be the unit ball in the space 2.

Construct the class 29" (b) consisting of all functions f € L,(B?) representable in
the form

o0

f(x) = pix), peb2™ BPy,, s=0,1,.,
s=0

where the series converges in the L, sense. We set 49" = #97(1). The class #4"
consists of all functions which may be approximated by the polynomial space 2, at
a rate of order s7".

It follows from Jackson’s Theorem that the Sobolev class WZ"’d belongs to the class
%’g‘r(b) with some constant 5. However the inverse embedding is not true, i.e., the
class ,%"2“ does not belong to Wz'"d(bl) for any positive constant b;. Nevertheless for
the class 22" (b) the same result as for the class W3 is true, that is, the deviation of
.@g”(b) from the manifold £, satisfies the same asymptotic.
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Consequence 2.2. Let d=2, r>0, and n be any natural number. Then

1. there exist points ai, ...,a, on the unit sphere S~ such that

. _r_
dist(BY, R(ay, ..., a,), L) <cin @1,

2. for any points ay, ..., ay, in the space R the following lower estimate is true

diSt(%;Lra ‘%(ala (KRR an)a LZ) > 62n7ﬁ-

The next consequence contains information about the structure of the radial
manifold %,.

Consequence 2.3. Let s be any natural number. Consider the spaces Pqs of
polynomials of degree <s. Then there exist positive constants 0<c<1, ¢ >1 and c;
dependent only on d, such that

1. ifn=cs?"" then 2, belongs to the manifold #(ay, ..., a,), where ay, ..., a, are some
points on the sphere S~
2. if n< s then Py does not belong to Ry, and the following inequality is true

diSl(B@dm R, L2) =>c3>0.

We describe briefly the proof of Theorem 2.1. This theorem consists of two parts:
the upper and lower bounds. In Section 3, we construct an orthogonal basis for the
algebraic polynomials IT = {P;}2, in the space L,(B?). In Sections 4-6, we
investigate the moments of radial functions with centers at a point a relative to the
basis I1, that is

bilga) = /B gl —a)Pi(x) v, acR

We prove that for the moments b;(g,) for any i the formula of partition of variables g
and a holds, that is, any moment b;(g,) may be given as a finite linear combination of
functions of the form y(g)n(a), where y and = are functions depending only on g and
the vector a, respectively. By the help of the formulas of partition of variables we
construct some finite dimensional linear system of equations relative to the unknown
moments of the initial approximated function from the manifold £,,. In Section 7 we
prove the upper bound in Theorem 2.1. The lower bound in Theorem 2.1 is proved in
Sections 8 and 9. The proof of the lower bound is based on comparing the entropy
numbers of the polynomial ball BZ;, and the radial manifold ball B#, =

{re#,: Hr||L2<1}.
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3. Orthogonal system of algebraic polynomials on the ball

In this section, we construct special orthonormal systems of polynomials on the
unit ball BY. Orthogonal systems of polynomials on the ball play the important part
in problems of approximations of multivariable functions by manifolds of linear
combinations of ridge functions (the plane waves) (see [13,18,33]). In the works of
[13,33] methods were developed for the construction of orthogonal projections on
polynomial subspaces and approximation by ridge functions. The system of
Gegenbauer orthogonal polynomials is the main tool used in the construction of
orthogonal systems of polynomials on the ball [18]. Note, in particular, that in two
dimensions, d =2, these Gegenbauer polynomials coincide with Chebyshev
polynomials.

In our work the system of orthogonal polynomials on the unit ball is obtained, in a
sense, by the convolution of two orthogonal systems. These are the system of
Gegenbauer polynomials on the segment [—1,1], and the system of spherical
harmonics on the unit sphere S?~!. We describe this construction next.

Let L,(S9"!) be the Hilbert space consisting of all the complex-valued square-
integrable functions /(&) on the sphere S“~! with the inner product

(h, o) = m(ha (&) dEde,  hi he (ST,

Sd-1
where by d¢ we denote the normalized Lebesgue measure on the sphere S9!

In the space L,(S9!) consider (see the appendix) the subspace H consisting of the
restrictions on S9! of the harmonic functions on R?. Let H, be the subspace in H
generated by all spherical harmonics of degree at most s, i.e. all harmonic
polynomials of degree at most s. Let Hsh"m be the subspace of H; formed by all
homogeneous spherical harmonics of degree s. The functions {/y}, k. generate a
basis in the space H"™ (see the appendix).

The space Hy = HI°"@ HM™ @ --- @ H'™ is the direct sum of the orthogonal
subspaces of the spherical harmonics of degrees 0,1,...,5. Denote by N; the
dimension of the space Hy,. We have N,=s?"!. Indeed, as shown in (A.4), using the
relation dim HM™ = s9-2 we obtain

N, = dim H, = dim H}*™ + dim H}°™ 4 - 4 dim H™™ =71,

In the space H we introduce the family of functions % = #(S?") = {h;}7,
consisting (see (A.2)) of all ordered spherical harmonics, that is, the functions

U {hsyk}keK"'
5s=0

The set Z(S!) is an orthonormal basis in the space H, i.e., for indices i # i’ we have
(hi, hy) = d;7, where d;; = 0 for i#7, and J;; = 1.

As shown in the appendix, consider next the Gegenbauer polynomials C,’f/ 2(t)7
teR, of degree n associated with d/2. We normalize the polynomial Cf 2 by a factor,
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i.e., we set
n'2(d), (1)
(n+d/2)n'I'(d/2)
where (a), =1, and (a), =a(la+1)---(a+n—1).
Let i and j be two arbitrary indices from Z., . Construct on R the function
U+ 1Dy

1/2
R A T b= I

and x- & =x1& + -+ + x4&4 1s the inner product of the vectors x and €.

From (4) we see that for any i,jeZ, the function P; is a polynomial on RY of
degree j. Note that if the indices i and j are such that the degrees of the polynomials
h; and u; satisfy the inequality deg h;>deg u; = j, then P;(x) = 0 (see [43, (A.10)]).

For a given integer j we let ¢; = 0 if j is even integer, and ¢ =1 if j is an odd
integer. Consider the set of matching indices

I=A{(i,j):jely, deghie{j,j—2,...,¢}}. (5)
Note that each matching index (i, ) € [ satisfies the condition: the parity of the degree
of h; coincides with the parity of the degree of the polynomial u;. Construct the
system of polynomials

I = I_I(Bd) = {Pij}(i.j)el' (6)

un(t) = v, 2CY2(1), where v, =

Lemma 3.1. The set I1(BY) of polynomials is a complete orthonormal system of
functions in the space Ly(B?).

Proof. Orthonormality of the polynomial system IT(B?) was proved by Maiorov
[20]. Therefore for any of the matching indices (i,j), (i,;") €I the following relation
holds:

<ij,Pj”1"> = / P,’j(X)P,’Ij/(X) dx = 5,’,‘/5]'/]'/. (7)

B4

We show that the set IT(BY) is a complete system in the space L,(B?). By
Weierstrass’ Theorem it is sufficient to prove that for any natural s the subspace of
polynomials 2, of degree s coincides with the subspace

span{P;eI1(B): degP;<s}

or the space of homogeneous polynomials ﬂgf’sm of degree s coincides with the
subspace span{P; e I1(B"): deg h;e {s,s — 2, ..., &}}.

Let thom be the space of homogeneous harmonic polynomials of degree /. It is
known [43, Chapter 4, Section 2] that any polynomial pe.ﬁf}f’sm
by

may be represented

p(x) = po(x) + [xI*pr(x) + -+ + ¥ pi(x),
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where pre H™R k=0,1,...,/; | =(s—¢)/2. From here it follows that the
dimension of the space 9 Jhom is equal to

dim 92%‘“ dim H hom 4 gim H. hog‘ + - +dim Hgom,
We have dim Hjhom = card{ieZ, :deg h; = j}, and degP; = j. Therefore
dim 9’2":“ = Z card{i: deg h; = j}

Je{s,s—2,... &}
=card{i:deghie{s,s —2,...,&}}

=card{Piell :degh;e{s,s —2,...,&}}.
Hence by the orthogonality property (7) of the polynomials P;; we obtain
@2‘1’“ = span{Pi;e Il : deg h;e{s,s — 2, ...,&}}.

Hence the lemma is proved. [

We insert in the set I the subset of matching indices I, = {(i,j) el :j<s}, and we
consider in the function system II the finite subsystem II; = {P;};, ;. From

Lemma 3.1 we directly obtain the next statement.

Consequence 3.2. The polynomial set Il is an orthonormal basis in the space of
polynomials 2 .

4. The moments of radial functions relative to the basis I1(B) and the orthogonal
groups of rotations

Let ' be any function from the space Ly(B?). From Lemma 3.1 we can decompose
the function in its orthogonal series by the system IT(BY) = {Pi}ijyer

Z biPy(x), by= {f,Py).

(ij)el
We denote the coefficients b;; of this decomposition as the moments of the function f
relative to the basis IT(BY).

Let a be a fixed point on the unit sphere S~!. Consider a radial function g,(x) =
g(]x — al*), xe B, with center a and ge C(4) being on the segment 4 = [0, 4].

In this section, we show that for any matching indices (i,/) €/ the moments b;(g,)
of the radial function g, may be represented as a linear combination of the moments
{bsj(g¢)}, ¥ = 0,1, ..., with a unique center at the point e = (0, ...,0,1)e S !.

The case d = 2: We first consider the two-dimensional case. Let ¢ be any point on
S' with the coordinates (cos t¢,sin t¢). Set #;(t) = exp(—+v/—1lit). Then the spherical
harmonics equal #;(¢) = t;(t:), i=0,+1,.... Therefore the system I1(B?) of
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functions consists of polynomials of the form
Py —v,/ h(Eu(x- &) dE, jeZo, ie{tj,£(—2), ..., Lo}
Introduce the orthogonal matrix
4 <c9sra —sinv:a), ses!
sint, cost,
translating the point e = (0, 1) to the point a.

For the moments b;; of the radial function g,(x) we have

bylga) = [ ollx —aP)Py(x) d

=v; h; x — alu;(x - X
— [ B@dz [ ol a0y
vy [ hacde [ o et ds

Since /1;(AE) = Ti(t: — t4) = Fi(te)ti(ta) = hi(E)ti(1,), then we obtain

bij(ga) =vjti ra/h dé/ (Ix = e)uj(x - &) dx
—vit(e) [ ol1x = eP)Py(o) dx = 1(s.) byl
Thus the following lemma is valid.

Lemma 4.1. Let a = (cos t,,sint,) be any point on the circumference S'. Then the
moments of the radial function g, are equal to

bij(ga) = ti(ta)by(ge) (i,j)€l.

The case d>2: For the proof of the result in the general case, i.e. d>2, we will
need some facts from the theory of representation of orthogonal groups. Consider
the group of orthogonal rotations SO(d) in the space R?, that is, the set of all square
real matrices 4 of order d with determinant det 4 = 1.

Let T = {T(A)} be the infinite-dimensional representation of the group SO(d) in
the Hilbert space L,(S“") of functions on the unit sphere S“~!. The representation
T is the mapping of the group SO(d) to the set of linear operators on the space
Ly(S771) of the form

(T(A)h)(x) = h(Ax), heLy(S*).

The mapping T is a group homomorphism, that is, satisfies the group relations:
T(AB) = T(A)T(B) and T(A™") = T~!(A), for any A, Be SO(d).
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Consider in the space L,(S?"!) a basis # = {h}7, consisting of all the
spherical harmonics introduced in Section 3. It is known [48] that the re-
presentation 7 in the basis 4 may be described as a collection of infinite dimensional
matrices, that is, to any matrix 4 € SO(d) there corresponds the infinite dimensional
matrix

T(A) = (tir(A4))—o;

and T'(A4) satisfies the conditions:

1. If h(&) = 3", ¢ihi(€) is the arbitrary function in the space L(S9"!) then

(T(A)h)(S) = h(4E) = i <§: lii’(A)Ci’>hi(f)- (8)

i=0 \7=0

2. The set {t;#(A)};_, is a linearly independent system of functions on SO(d).

In particular from (8) for any the spherical harmonic /; we have

o0

hi(A8) =" 1y (A)hy (). ©)

i'=0

It is known (cf. [48]) that the representation 7 is invariant in every subspace H sh‘)m
of the homogeneous harmonic polynomials of degree s. That is, for any matrix
AeSO(d) and any polynomial e H™™ the polynomial 4(Ax) also belongs to the
subspace H"°™. Therefore any infinite-dimensional matrix 7'(A4) is the block matrix
in which the square matrices Ty(4) of order dim H"™™ stand on the main diagonal,
ie.,

T(A)=Ty(A)® - @T(A)® --.

Note that for every s=0,1,... the matrix set {75(4): 4€SO(d)} is the finite-
dimensional representation of group SO(d) in the space H'"™ that is, it satisfies
conditions 1 and 2.

Lemma 4.2. Let a be any point on the unit sphere SY~'. Define the matrix A€ SO(d)
such that Ae = a,e = (0, ...,0,1). Let g(t) be any continuous function defined on [0, 4],
and g.(x) = g(|x — a|*) be the radial function with center a. Then for any matching
index (i,j) from the set I

o0

bi(ga) = Y tir(A)bi(ge)-

i'=0
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Proof. By Definition (4), using twice the invariant property of the Lebesgue measure
relative to rotation in the space R? we have

Sty = [ allx=alyas [ R@mtx-¢)de
— [ alx—elyax [ Romtdr-¢)de
v [ alx—elyas [ Racmtx-o)de.
Applying (9) we obtain

/ g(x—eydx [ R(Au(x- &) de

Bd Sd-1

|
[~]s
fon
&
T 3
=N
=
\
o
i
=
Ra)
S
|
8
o
=
S
<
o
3/

The lemma is proved. O

5. A partition of variables for the moments of radial functions with centers on S7!

Let g,(x) = g(]x — a]*) be any radial function with center ae S?~!, and let P be
any polynomial on RY. In this section, we show that every moment of the function g,
relative to the polynomial P may be represented by a finite linear combination of
functions taking the form of a product of a function of g and a function of a. That is,
every moment of the function g, is, in some sense, given by a partition of variables g
and a.

Theorem 5.1. Let ge C(4), A = [0,4], and ae S*~'. Let P be any polynomial on R? of
degree s, s=>d*/2. Set v =2d + 5. Then

Vs

{ga; P) = Z nm(a;P) Vm(g)7

m=0

where the functions m,,(a; P) are some polynomials on the vector a of degree s, and the
Ym(g) are some linear functionals on C(4).

Proof. Let AeSO(d) be the orthogonal matrix such that Ade=a, e=
(0,...,0,1). Then by the invariance of measure dx relative to rotation in RY
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we have
P> = [ allx = aP)P(x)
= [ allx— el Pax) dx
Bd
= [ P ) P+ 0)
=S maip) [ gl (10)
I[<s Bi—e
where I = (I}, ..., 1;) is the multi-index, |I| = I + --- + Iz, X' = x/ ---xi‘,’, and m;(A4; P)

are some polynomials of degree |/| on the d> elements of the matrix A.
Introduce in the space R? the spherical system of coordinates:

x| = rsinwg_p...sinw; sin ) = ru; (),
Xy = rsinwg_y...sinw;cosw; = ruy(w),
Xg_1 = rsinmy_1Cosmy_r =riug_1(mw),
Xqg = rcoswg_y = rug(w),
where the variables vary as follows: r=0, 0<w; <2x, 0<wip<m, k=2,...,d — 1.
We denote this formulas concisely as
x=ru(w), u(w)= (u(w),...,us(w)). (11)

The Lebesgue measure in the spherical coordinates is
dx =dxy...dx; =cg " sin" > wy ... sinwydo...dwg_ dr
=r"y(w) dodr,

where ¢; = I'(d/2)/(2n)">.
Denote by S¢~!(r) = {xeR?: |x| = r} the sphere in R? of radius r. We consider
the surface

Q(r) =S (r)n (B! —e)

in the ball B! —e={x—e:xeB’}. Clearly, B’ —e= Ui, <2Q(r) and
Q(r)nQ(r') = @ for any r#£v.

Now fix r. We represent the surface Q(r) by the spherical system of coordinates. In
the rectangular system of coordinates the surface Q(r) is described by the system
consisting of the equation and the inequality

XA xXE = X X (e — 1)°<1.
It follows from the definition of the spherical system of coordinates that the points
on the surface Q(r) satisfy the inequality > <2x; = 2rcos w,_, that is

r<2coswgy—i, or 0<wy_j<arccos(r/2).



48 V. Maiorov | Journal of Approximation Theory 120 (2003) 3670

Set o, = r/2. Then the surface Q(r) in the spherical system of coordinates is
Q(r) = {(r,»): (w1, ..., w4_1)€[0,2n] x [0, 7] x [0, arccos(r/2)]}. (12)

We may represent the last integral in (10) for fixed / as

b= [P dr= [ gt
B‘l—e B‘I—E
2
:/ g(rz)r|”+d_ldr/ ull‘(w)uij(w)v(w)dw (13)

0 Q(r)

The computation of the last integral is done next.

Lemma 5.2. Let s>d*/2. Then for any multi-index | with |I|<s the following equality
holds:

/ ull (w)- ufj(w)v(w) do
Q(r)

= darccos o, + y; + Pry(on) + 4/ 1 — 020y 4(0),

where o, = r/2, and 9, y; are some constants, and Py, Q) are some polynomials of
degree ds.

Proof. Consider the function T'(w) = u! (w)ufj(co)v(w) on S9! It can be shown

by the spherical coordinate formula (11) that the functions ull‘ (w) ui,’(w) are
trigonometric polynomials on the variables wy, ..., w,_; of degree at most d — 1, and
the function v(w) is a trigonometric polynomial of degree d' = (d — 1)(d — 2)/2.
Because |/|<s and s>d?/2 the degree of the polynomial 7'(w) is |/|(d — 1) + d' <ds.
We decompose the polynomial T via its Fourier series over the variable w,_;

T(w)=T(w,...,w4-1)
ds
= Bio(w1, ...04-2) + Z [Amm(o1, ...004-2) sin (mwg_)

m=1

+ B(wi, ..., w4-2) cos (mwg—1)],

where the Fourier coefficients A4;, and B, are functions dependent only on
W1y ...04_7.
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Using (12) we integrate the function 7'(w) over the domain Q(r)

2n i
/ T(w)do = / dw, / dw; -
Q) 0 0

T arccos o
X/ dwd—2/ T(o1,...,0q-1)dwg_
0 0

arccos o,
=by / dwg_
0
ds arccos o,
+ Z [a/m/ sin (mwg_1) dwg—
m=1 0
arccos o,
+ b;m/ cos (mwg—1) dwg—1 |, (14)
0

where a;, and by, are coefficients dependent only on / and m.
Consider the functions

cos(marccos t) = Z Ponct*

and

sin (marccos 1) "=

IR =Y aut

which are the Chebyshev polynomials of the first kind of degree m and second kind
of degree m — 1, respectively. Hence taking into consideration (14) we have

/Q(r> T(w)do

= byy arccos o,

m+l
+ Z [am (1 — cos(arccos o)) + bjysin(arccos ;)]
= byy arccos o,

m—1

ds 11 1 "
+ Z " [alm<1 7Z1pmka ) +b/m\/ 1 70‘22%71/(“ ‘|

ds -1 m+1
or=bp, 7y, =bpr+ E ——
m=1 m

Set

and

Pl,s(t) Z

m=1 m=1




50 V. Maiorov | Journal of Approximation Theory 120 (2003) 3670

Then we have
/ T(w)dw = d;arccos o, + y; + Pry(o) + /1 — 020y (o).
Q(r)

Lemma 5.2 is proved. [

We continue the proof of Theorem 5.1. From (13) and Lemma 5.2 we obtain
2
I = / g(r2)r|l|+d—l
0
X [51 arccos o, + y; + Prg(o) +4/1 — acfQ;vS(oc,)] dr. (15)

Since o, = r/2 then the functions

ds

Pls (o) Z P[k” and  Qy (o) Z qlk"

are polynomials in the variable r of degree ds with some coefficients pj, and ¢j,.
Denote y; = 7, + pjy, and

2
m(g):/ g iy, Jely
0

v.(9) = /2 g(r?) 4 Varccos(r/2) dr
0

2
wlhla) = [ g T

Using this notation we rewrite the integral (15) as follows:

Iy =y (g) + viu (9) + Z plkw|1\+k )+ Z qlkw\l\+k

Recall from (13) the definition ;= [, g g(|x[*)x' dx. We substitute this
expression in (10) and changing the order of summation in four summands
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to obtain

(g Py = > m(4; P)I)

[ <s

= m(4;P)
[)<s

ds
2
+ Z q?k‘/"|(1>+/c(g)]
k=0
Z omi(A; P) | um(g —|—Z Z yimi(A; P) | om(9)

1oy (9) + Vw9 +Zplk‘vll\+k( )

m=0 \ |/|=m =0 \ |/|=m
(d+1)s

+ > 1 D> pkm(4;P) |wi(g)
m=1\ Lk:|l|+k=m
(d+1)s

+ > 1 DL dwm4;P) | wi(g).
m=1 "\ Lk:|l|+k=m

From here we directly obtain the statement of Theorem 5.1.

6. Partition of variables for the moments of radial functions with centers outside
of S¢-1

Now we study the moments < g,, P;» of the radial functions g,(x) in the general

case, that is, the center a is any point in the space R?. In this case, we will prove the
next result about the partition of the variables g and a.

Theorem 6.1. Let g C(R), acRY, p = |a|, and P be any polynomial on R of degree s,
s=>d*/2. We separate the space RY into four sets

Dy ={0}, D, ={a 0<]a|<l1},
D, ={a:la| =1}, Ds3={a:|a|>1}.
Then the following statements hold:
1. if v=1, or 3 then

(2d+5)s+4
g Py =Y wh)(a,p,1/p; P (g, p), aeD,

m=0

where 7.y (a,p, 1/p; P) are polynomials in the variables a, p and 1/p of degree s, and

yﬁn)(g,p) are linear functionals in g on the space C(R) and some functions in the

variable p.
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2.ifv=20or 2 then

Ss+4
(g Py =Y nl(a,; P10 (g), aeD,,
m=0

where the nfﬁ)(a, ; P) are polynomials in the variable a of degree s, and the y,(,‘[)(g) are
linear functionals to C(R) and some functions in the variable p.

Proof. Let AeSO(d) be an orthogonal matrix such that p4e = a. Then by the
invariance of measure dx relative to rotations in R? we have

CuPy = [ olx=aP)Peydx = [ gllx = pef)Plx)

= [ PP+ pe)) dv

S mldp) [ g ax (16)
i<s Bl—pe
where (4, p; P) are some polynomials of d*> + 1 variables 4 and p of degree |/|.
We now study the integral fBLpeg(|x\2)xl dx for the different values p = |al, i.e.
aeD,,v=0,1,2 3.
1. The case aeD;: We first consider the case 0<p = |a|< 1. Define in the ball
B? — pe the surface

Q,(r) =S () (B = pe), 0<r<l+p.

Obviously
B! — pe = U Q,(r)
0<r<l+p
=( U sd—lm)u( U Qm). 1)
o<r<l—p l—p<r<l+p

Fix r. We represent the surface Q,(r) by the spherical system of coordinates (11).
In the rectangular system of coordinates the surface Q,(r) is described by the next
equation and inequality

Xi+ e xg =0 x4 xg (e —p) <1

It follows from the spherical system of coordinates (11) that the points on the surface
Q,(r) satisfy the inequality 2 + 2x4p + p? <1, that is

2 2 -1 —p?
r4+2rpcoswg_1 +p <1 or 0<wy_; <arccos )
—2rp

Set o, = _;;p”z. Then the surface Q,(r) has the form

1. If0<r<1 —p, then Q,(r) = S9~!(r), and
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2. If 1 — p<r<1+ p, then
Q,(r) ={(r,o): (w1, ...,w4-1) €0, 27]
x [0, 7] x [0, arccos a,,]}. (18)

We fix [ and consider the last integral in (16). Using the spherical coordinates (11)
and (17) we represent this integral as

I+p
/ g(|x[))x! dx = / g(r?)rlFa=1 dr/ ul (w)o(w) do
Bl—pe

0 Qy(r)

= v P2) =1 gy d(o)v(w) do
= [ et [ o) a
v P2+ gy d(0)o(w) do
w [ Tt ar [ o)) d

-P Q,(r)
=1+ 1 (19)

Set by = [gu 1 u' (w)v(w) dw. Then
1—p
I = / g(rH) =1 dr/ u (0)o(w) do
0 se-1
1—p
:b;/ g(r)+a=1 gy, (20)
0

Now we consider the integral

I+p
I :/] g(rz)rm“l*l dr/ ull‘ (a))ui}’(w)v(w) do. (21)

—p Qp(r)

It follows from Lemma 5.2 that

2
I :/ g(r?)rlitd-1 {51 arccos o, ,
0

1 Prs() 1= 2,01,(,) | dr. (22)
Since o, , = 11’;;{)”2, and the functions Py, Qj are polynomials of degree ds, then the
functions
ds ds
Pry(op,) = Y pilp,1/p)* and  Qig(,,) = > qulp,1/p)r* (23)
k=—ds k=—ds

are rational functions in the variables r of degree ds and py, ¢; are some polynomials
in the variables p, 1/p of degree ds.
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Denote by y; = y; + pw(p, 1/p), and

1—p
ha(g7p)=/ gy Vdr, JeZ.
0

I+e 2N\ A+d—1
u;(g,p) =/1 g(r)r = dr,
—p

I+p X
v,(g,p) = /1 g(r)r* " 'arccos(a,,) dr,
-p

I+p
whoo) = [ aPr
1—p

I+p

g(r)Hird=l o o2, /4 dr.

We rewrite the integral (20)+(23) as follows: I} = b;hy (g, p) and

2
w®, (g, p) = /

1—p

ds

1
1 =810 (9.p) + (9. p) + Y pup,1/pIw (9. 0)
k=—ds
ds

2
+ > arlp, 1 /o), (g,p).
k=—ds

We substitute this expression in (16) to obtain:

(g Py =Y m(A4,p; P)I] + 1}

[)<s

=" m(A,p; P)bihyy(p, 1/p) + S10(9, p) + Vit (9, )]

[)<s

+ j{: n;@4,p;1ﬁ

l1<s

ds
+ > anlp, l/p)Wfflk(g,p)]-

k=—ds

ds

1
> pulos /w9, 0)
k=—ds
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Hence changing the order of summation we obtain

{ga, P) = zs:(z b/nl(A7p3P)>hm(g:p)

m=0 \ |/|=m

+ i Z 5/7‘51(/1,/);1))) vm(g,p)

m=0 \ |/|l=m

m=0 \ |l|=m

+ i Z y;nl(A,p;P)) um(g7p)

+ X Z Plk(ﬂa 1/p)ﬂ[(A,p,P)) Wig)(g)

m=0 \ Lk:|l|+k=m

@

3
Il
o

1|l +he=m

+ > pilp, 1/P)ﬂl(A,P;P)) Wi (9)-

From here we directly obtain the statement of Theorem 6.1.
2. Case a = 0: From (16) we have

(P> = [ g5?)PL) s = 32 m(0,0:P) [ gl av

|| <s

According to (20) we obtain

1
/ g(|x|2)xl dx:b,/ g(rz)rVHd*l dr.
):4 0

Set

ny (P) =Y bm(0,0;P) and Vf,?)(g)=/ g(r) .
Bd

|l|=m
Then from (24) and (25) it follows that

S

<QO7P> = Z (Z b[ﬂ](0,0;P)) /Bdg(r)rerdfl dr

m=0 \ |/|l=m

S
=Y 7P (9).
m=0

3. Case |a| = 1: This case was proved in Section 5.

55
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4. Case |a|> 1: In analogy to (16) and (19), we have

o+l
{ga,p> = Z ﬂ[(A,p;P)/ g(y)rVHd*l dr

ll<s p=l

X / u (w)v(w) do.
S4=1(r)n (B?—pe)

We now repeat the proof of the case 0<|a|<1. Theorem 6.1 is proved. O
We formulate one consequence of Theorem 6.1 in a form suitable for future use.

Consequence 6.2. Under the conditions of Theorem 6.1 for every v=0,1,2,3 the
following relation is true
Sds

(g Py =D 7)(4,p,1/p; Py (g, p), aeD,,

m=0

where n,(;{) (a,p,1/p; P) are polynomials in the variables A, p and 1/p of degree s, and

y,g;')(g, p) are linear functionals of g€ C(R) and some functions of p.

7. When the polynomial space belongs to the manifold of radial functions

In this section, we will show that if » and s are chosen in a special way, then the

polynomial space 2, belongs to the manifold of the radial functions %(ay, ...,a,)
with some centers ay, ..., a, belonging to the unit sphere.

Lemma 7.1. Let n and s be any natural numbers such that n> c dim 2°°™, where ¢> 1
is some constant dependent only on d. Then there exist points ai, ...,a, on the unit
sphere S~ such that

Pas<R(ar, ..., a).

Proof. We will find the points a; ..., a, € SY~! satisfying the following conditions. For

any polynomial P from the space #, there exist polynomials gi, ...,g, €2 > of
degree s/2 such that
n
P(x)=>" gillx — al’). (26)
k=1

Let O be any polynomial from the space #,;,. Consider the orthonormal system of
polynomials IT = {P;} ., introduced in Section 3. Let s be any natural number.

We examine in the set I the subset of the matching indices I, = {(i,j) el :j<s}, and
consider in the function system II the finite subsystem II; = {Py};; ;. From

Consequence 3.2 it follows that the set II; is an orthonormal basis in the space of
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polynomials Pis. Decompose the polynomial Q by the system I1;
= > bi(Q)Py(x), by =<0, Py). (27)

(ij) el
We now investigate the decomposition of an arbitrary radial function using the
orthogonal system I1. Let ¢ be any point on the sphere €S?"! and ¢ be any

polynomial. Consider the radial function g,(x) = g(Jx —a|*) with center a. Let
(i,j)el be a fixed matching index and b;i(g,) = {ga, P;j> be the corresponding
moments of the function ¢, by the system II. By Lemma 4.2 we have

o0

bij(g4) = Z tir (A)bij(ge), (28)

i'=0

where 4€S0O(d) is an orthogonal matrix such that de=a, e=(0,...,0,1). It
follows from Theorem 5.1 that

v/

bif<g€) = Z nm(e; Pi/)ym(g)’ (29)

m=0

where the 7,,(g) are some linear functionals on C(4), and v =2d + 5. Put 7,,;; =
T (e; Py). Due to relations (28) and (29) we have

vj 0
bij(ga) = Z <Z Lir (A)Tcmi’j> Ym(9)- (30)

m=0 \i'=0

Now consider an arbitrary linear combination of »n radial functions
- 2
d—1
= E gr(|x —arl”), aeS, grePiyp.

Let the matrices 4, € SO(d) be such that Are = a;. Then by (30) the moments of the
function G are equal to

Z Z(Z tir (A n‘mu>vm(qk) (31)

Consider two sets of the matching indices I, = {(i,j) el :j<s} and
K, ={(k,m):k=1,...,n; m=0,1, ..., vs}.

Let o7 = (4, ..., A,) be a vector with matrix coordinates 41, ..., 4, belonging to the
orthogonal group SO(d). For every matching index (i,j)el; and (k,m)eK; we
denote
k _
Zij’”(,pi) = {

S0 tiv (AT, 0<m<vj

. (32)
0, vji<m<vs.
Construct the matrix

_ (phm( gyykmeks
Z(t) = (Zi" (D)) ijyer, s
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where (k,m) is the indicator number of the column of the matrix Z(</), and (i,j) is
the indicator number of the row of the matrix Z(.<7). The order of the matrix Z(./)
is equal to |I| x |K;|. We denote y,,,, = 7,,(gx) and construct the vectors

Y= (ylcm)(k,m)eky’ b= (bij(G))(i.j)em

where the coordinates are numbered by the matching indices (k, m) e K, and (i, ) € I,
respectively. With the help of the matrix Z(.«/) and the vectors » and y expression
(31) may be rewritten as

Z ng(%)“/km = blj(G)a (i)j)eIS' (33)
(k.m) e K,

To show that the given polynomial Q belongs to the manifold %(ay, ..., a,) one
needs to prove that for some selection of function Ge #(ay, ...,a,) all moments of
the functions Q and G coincide, that is

byj(G) = by(Q), (i.j)els. (34)
Construct the vector O = (b,-j(QA))([’i)e ;.- Using (33) relation (31) may be rewritten in
the matrix form

Z(A)y = 0. (35)

Thus, we obtain a finite-dimensional linear system of equations relative to the
unknown 7.

We need to show that for some choice of the matrix set .o/ = (44, ..., 4,) system
(35) has a solution.

According to the Kronecker—Capelli Theorem it is sufficient to show that there
exist a collection of matrices «/* = (47, ..., A¥) in the group SO(d) such that the
ranks of matrix Z(.*) and the extended matrix (Z(.*), Q) coincide. Recall that
QeP,, and dimP ., = |I;|, where we denote |I;| = card I;. Therefore, it is enough to
prove that the rank of the matrix Z(.«/*) for some collection of matrices .o7* is equal

rank Z(.o/*) = |I|.

Fix an index j/ in the set {1, ..., s}. Consider the submatrix of matrix Z(.</)

(ki)ely

. kvj'
Z(&/J/) = (z;" (t%»(m)elﬂ )

lj'

where k and 7 are the indices of the columns and rows of the matrix Z(.«,;’) of order
|I\\Iy_1| x n. Then the matrix Z(.2/) has the form

Z(£,1) 0 0
Z(et) = B Z(A4.2) .. o |
c D ... Z(,s)

where B, C, D, ... are some nonzero matrices.
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Recall that |I;| = dim 2y, ;, and |I; \Iy_,| = dim ﬂhom Since Zf;’”(&/) = 0 for any
m>vj (see (32)) then

rank Z(.o/ Z rank Z(.o/ (36)

Moreover, we note that as a consequence of the inequality dim ﬂi}im =>dim 97’20;“ =

|7;\1;1| the number of rows |I;\\I;_| of the matrix Z(.<Z, ) is at most the number of
columns n. For fixed index j/ we calculate the rank of the matrix Z(.</,;'). The
elements of the matrix Z(</,j) are

o0

kvj
Z;V (o) = Z tiv (k)T -
=0

According to Property 2 in Section 4 of the matrix T(A4), the family {¢;(A4)} i,i =
0,1,..., is a linear independent system of functions on the matrix set SO(d).
Therefore, taking into account m;;; = m,(e; Py;)#0 for every i/ the family of
functions

{d’ij(A) = Z tir (A) Ty iy (i’j)el‘}
=0

is also a linear independent system of functions on SO(d). It follows that there exist
matrices AY, ..., A*eSO(d) such that for any je{l, ...,s} the rank of the matrix

o V, 1
Z(A*,J) = (ZP AN o = (AT, 4%

is equal to the number of rows of the matrix Z(.«/*, ), that is
rank Z(1* j) = |\ .
Since 1<j<s, and I_; = 0, then from (36) we obtain
s
rank Z (/™) > Z rank Z(</*,j) > Z ILN\Tj-1| = |1
J=0 =
Since the number of rows of the matrix Z(</*) is equal |I;| then we obtain that

rank Z(/*) = |I;|. Lemma 7.1 is proved. [

As we show next, the upper bound in Theorem 2.1 is now a simple consequence of
Lemma 7.1.

Proof of Theorem 2.1 (Upper bound). We resort to the Jackson Theorem [47]

confirming that the distance of Sobolev class Wzr'd from the space of polynomials
P, of degree s satisfies the inequality

dist (Wzr’d, Pas, Lr)<es™,

where the constant ¢ depends only on r and d.
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Let the natural number s and n be chosen such that ¢ dim 372?;“ <n<2cdim 9’2?;“

where ¢> 1 is some absolute constant. Since dim 9’2?;“ =571 (see [43]), it follows that

n=s9"1. Then by Lemma 7.1, P45 belongs to the manifold #(ay, ..., a,) for some
points ai, ...,a,€S% . Hence we obtain

r

dist (Wy*, R(ay, ..., a,), L) <dist (Wy*, Py, Ly) <cs™ =na-1.

The upper bound in Theorem 2.1 is proved. [

8. Approximation of polynomials of high degree by radial functions

Introduce in the space #, of polynomials of degree s on B? the norm from the
space Ly(B%). Let

BZ?ys ={P€Pys:||P|l1,py<1}

be the unit ball in the space #,,. In Section 7, we proved that if the natural numbers

s and n are such that n>c dim gﬂﬁm then the polynomial space 2, Z(ay, ..., an).

We will now show that for n< ¢ dim ?}23‘“ the space #,, dows not belong to %,
where 0<¢' <1 is some absolute constant. Moreover the space 2, is “badly”
approximated by the manifold #,,. That is, the deviation of the function class BZ2,
from £, satisfies the inequality

dist (Bgd,s'a Ry, Lz)) =c1 >0,

where ¢; depends only on d. The proof of this statement is based on a scheme
proposed by Maiorov [20]. The main idea of the proof is the comparison of the
entropy numbers of the sets B?;, and B#%,, where we denote by BQ =
{f€Q:|Ifll, <1} the intersection of the set of functions Q and the unit ball in the
space L,.

Let IT = {Py}j)es
Section 3. We fix a natural number s. Consider in the index set / the subset I, =
{(i,j) el :j<s} and the corresponding subset in [T of polynomials

I, = {Pij}(i.j)e[;

Set m = my = card I,. We have m;=<s?. Arrange the set I, such that I, = {1, ...,m}
and correspondingly the set of polynomials IT, = { P }|_,.

By Consequence 3.2, we have that the system of polynomials I1; is an orthonormal
basis in the space Z,,. Hence every polynomial Pe #,;,; may be represented as

be the orthonormal system of polynomials introduced in

P(x) = i be(P)Pi(x), bi(P)= (P, Pry,
=1

where the by (P) are the moments of the function P relative to the basis II.
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Consider the normed space /J' consisting of the complex vectors b = (by, ..., by)
with norm
m ]/2
6], = (Z bk|2> :
k=1

Denote by By = {bely:||b||,<1} the unit ball in the space /. By Parseval’s
equality |\P||iq =3 |bi(P)|*. Therefore, the polynomial ball B%, is isometric to
the unit ball B in the space /5.
Introduce in the space /5" the set of sign-valued vectors
E,={e=(e1,..cs&m) i1, .c,m= t1}

Note that the set of vectors m~'/2E™ belongs to the ball BY.

Let F be some set of functions in the space L,. We denote by F the corresponding

set F={(bi(f),...,bm(f)) :f €F} of vectors in the space /}'.
From the above and Bessel’s inequality it follows that the deviation of the ball
B#?,, from the manifold %, satisfies the inequality

dist (BP 4, R, L)) = dist (BP g5, R, 1)

> m~ 2 dist (E", Ry, . (37)
Consider the function: sgnx =1 if x>0, and sgnx=—1 if x<0. If a=
(a1, ...,am)eR™ then we denote sgna = (sgnay, ...,sgnay). If A is some set in R”

then denote by sgn A = {sgna:acA}.
Let g be any complex number, and Re ¢ be the real part of ¢. For any number
o= 41 we have | — g|>|x — Re g|>1o — sgn (Re g)|. Therefore for any vectors

¢e E™ and be #, we have
1
lle = bll; =5 lle — sgn(Re b)),

where sgn(Re b) = (sgn(Re by), ..., sgn(Re by,)). Hence it follows that

dist (E™, R, I") = max inf ||e —b||,
ce Em beR,
> 1 max min [l¢ — sgn(Re b)]|,. (38)
ce Em beg;;gn

For any positive number § we introduce the d-packing number of the set E™:

N5 =max {N : there exist &', ...,e" e E" s.t. ||g' — ¢,
>0 for any i#j}. (39)
Let #(8) = {¢', ..., "} be the subset of elements in E” for which the maximum

in (39) is attained, that is || — &/||, > for any i#/. Set 6 = \/m/2. It is known ([19],
see also [25]) that the cardinality of the set #(/m/2) satisfies

card A (v/m/2)=29", (40)
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where 0 <c¢p <1 is some absolute constant. Consider the subset of vectors in E™
ym .=y = {sgn(Reb): beR,}.
From inequalities (37) and (38) the next result follows.

Lemma 8.1. Let s and n be any natural numbers, my = card I, and 6, = \/m/2. Then
in the set E™ there exist a subset J# (0s) such that

. 1 . m. m.
dist (BP 4, Rn, L2)) >F dist(A (05), V)", 15"°),

mg

and card A (dg) =29,
Furthermore, we show the following estimate for the cardinality of the set V).

Lemma 8.2. There exist some absolute constants 0<c' <1 and 0<c¢| <cy/2 such that if
h

s and n are any natural numbers satisfying n<c' dim 25" and mg; = card I, then the
inequality

card V)» <29,
holds.

We will prove Lemma 8.2 in the next section. From Lemmas 8.1 and 8.2 we have
the following theorem:

Theorem 8.3. Let s and n be any natural numbers such that n<c¢' 9"2%‘“, where 0< ¢ <1
is some constant depending only on d. Then

dist (BP ., B, L)) > 1.

Proof. Consider the set #(dy), d; = \/my/2. By (40) we have card # (d,) >2“". For
any & #¢" € #(d;5) we have the inequality ||¢' — &"||, = ;.

By Lemma 8.2 the cardinality card V)" <2(@/2m: - Therefore, there exists an
element &*e #(9,) satisfying

1
s
[nin lle” = vll, =7 v/ms.

Hence, taking into consideration Lemma 8.1 we obtain

. 1 .
dist (Byd’s, %”,Lz))ZZ—\/HTS ur;lll/?x ||g* — U||2> 1/8.

Theorem 8.3 is proved. [

Note that from Theorem 8.3 and Lemma 7.1 Consequence 2.3 directly follows.
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Let ISO be some subset of the set I,. Consider the subspace in 2, defined as

Qus(I)) =< > e;Py(x):e5 = £ 1 for all (i,j)el!

(ij)er)
From the proof of Theorem 8.3 we directly obtain.

Consequence 8.4. Let 0<c<1 be any constant. If card ISO =ccard I, then
dist (Qa (I 0, Ry, Ly)=c1 >0,
where ¢, is some constant dependent only on d.

Proof of Theorem 2.1 (Lower Bound). It suffices to prove Theorem 2.1 for natural
numbers s and n satisfying to s?~! = n, where s is an even integer. Let r be any
positive number, and # be the smallest even number such that ' >r. Set u = p, =
2r' — 1. Let j be any number from the set {0,2, ...,s}. Denote by o; and f; integers
such that s —j = (u+ 1)a; + f;, where a;€Z, and f;€{0, ..., u}.

Introduce the even index set IS = {(i,j)el;:je{0,2,...,s}}. Consider the
function a from I$*" to R defined by

. s 1
a(i,j) = ay = (=1)* (ﬁ)?/%v
J

where ¢, is some number equal to —1 or 1. The set of functions a corresponding to
all possible selections of the &, = +1, (i,7) e [;**" will be denoted A;.
We consider in the set I{*" the subset I{y™ = {(i,/) € [{**" : B; = 0}. Construct two

sets of polynomials on R?

QA) =3 > ayPy(x): acdp, QALIE") =< > ayPy(x): ae 4]

(ij)eLyren (i) ely™

In the work of Maiorov [20] it was proved that s~ Q(4}) echr’d with some positive
constant c.
However, we have card I{y" > (1/) card I3". Therefore by Consequence 8.4 and

using the Bessel’s inequality we obtain
dist (W5, Ry, Ls)
>c s dist(Q(A]), Ry, Ly) = ¢ 's™" dist(Q(A4, ISE™), A, L)

=c ' dist(Qus(1°), Rny L) = ¢ ers™ = con /71,

Theorem 2.1 is proved. [
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9. The proof of Lemma 8.2

We prove Lemma 8.2 according to the scheme proposed by Maiorov [20] while
formulating some of those results.

Let m, s, p and ¢ be some natural numbers. Let n,5(0),a =1,...,m; f =1, ...,q be
any algebraic polynomials with real coefficients of degree s in the variables ¢ =
(61, ...0,) €eR’. Construct polynomials on the p + ¢ variables y = (yy,...,7,) eR?
and ¢ = (01, ...0,) eR?:

q

nOC(%a):ZVﬁna[}(a), a=1,...,m
p=1

Consider in the space R” the real algebraic manifold

Hm.,s,n,q - {TC(V,O') = (7'51("/,0), ...ﬂm(’y,G)) : ()},O’)ERq X Rp}

Introduce the set of sgn-values vectors

sgn Hm.s.p,q = {Sgn 77:(’}/', J) : (Va O-) eR? x Rp}

Lemma 9.1 (see Maiorov [20]). Let m,s,p,q be integers such that p + g<m/2. Then
for the cardinality of the set sgn(Il,, s, 4) the following estimate holds:

Dem )‘Hq

card{sgn(Ilyspq)} < (4s)’(p+q+ 1)p+2 (qu

Let m = my, and we consider the set of sign-vectors introduced in Section §:
Vs = {(sgn(Reby), ...,sgn(Re by,)) : (b1, ...,bm) € Rn}.

We have b= (by,....,bn) = (b1(9),...,bm(g)) for some function geZ, (see
Section 8). We represent the vector b as

b= (bij(g))(i,/)els = (<g7PU>)(ij)elx‘

Let gq(x) = ga(|x — a|?) be any radial function from the manifold 2, with center
aeRY. According to Consequence 6.2 for any matching index (i,j)el; the
corresponding moments b;;(g,) = <{ga, P; » are represented by

Sds

Cgar P> = (g, 0)m (a,p, 1/p; Py), aeD’, p=d, (41)
1=0

where v =0, 1,2, 3; for every v the functions ygv)(g, p) are linear functionals relative

to ge C(R) and some functions of the variable p, and the functions n}")(a, p, 1/p; Py)
are polynomials of degree s in the variables a, p and 1/p.
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Now let G,,€ %, be any function, i.e G,, be the linear combination of » radial
functions with centers aj, ..., a,eR?

n
)= glx—al’), g=A{atio, a={a}i,
k=1

By (41), for any index (i,j) €, the moments of the function G,, are equal to

n 5ds
CGoar P> =33 0 gk, p)m™ (ar, pis 1 pi Py),
k=1 [1=0

akEDVkv pk:|ak|7

where the indices vy = 0, 1,2, 3 are chosen according to the vector a; belonging to the
domain D". Thus the vector of moments of the function G,, have the coordinates

b(Gya) = ({Gya Pij? ) ijyer,

n Sds
(Z Z 1 gk, o)™ (ak, g I/Pk;Pz']‘) . (42)
1 (i) el
Consider in the space /' the set b(%") = {b(G,q): GyaeR"}. We estimate the
cardinality of the set
sgn (Re b(#,)) = {sgn(Re b(Gya)) : Gga€ Rn}-
We have

card{sgn(Re b(#,))}

<card{ U {sgn(Re b(G,,)) :

Vi, =0,123
akeD"", ngC(R), k= 1, ..,n}}
<4" mai);1 )5 card{sgn(Re b(G,,)) :
Vi vy =0,12,

areD™, greC(R), k=1,...,n}. (43)

Fix the indices vy, ...,v,. We order the matching indices (i,j), (k,/) and also the
functions y, 7 as follows:

1. Enumerate the set {(i,j)el;} in {o =1, ...,m}, where m = card I.

2. Enumerate the set K;={(k,/):k=1,...,n, [=0,...,5ds} in {f=1,...,q},
where ¢ = n(5ds + 1).

3. Arrange in order the coordinates of the vectors aj, ...,a,€R? and numbers

D1y eees P ﬂ%’ ) ,pl in one vector ¢ = (a1, ...,0,)eR?, where p = (d + 2)n.

4. Arrange in order the collection of functions {yﬁv")(gk,pk) k=1,...,n:1=
.,3ds} in the vector y = (yy, ...,7,) €R?, where ¢ = n(5ds + 1).
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5. Arrange in order the collection of polynomial

{m" (i Vi Py) : (L) €L, (ko DKo}

as the functions {mp(0):a=1,...,m;,f =1, ...,q} of the variable g.

Then vector (42) may be written as

b(Gya) = (Z Vﬂuﬂ@')) :
p=1 a=1

Let the numbers p and ¢ be such that p + g<m/2. By Lemma 9.1 for fixed vy, ..., v,
we have the estimate

card{sgn(b(G,.)) :are D", gre C(R), k=1, ...,n}

q m
<card sgn(Z yﬂnaﬁ(a)> :y7eR?, geR?
p=1

o=1
2em \"
< (45 2 (p_> .
@5y (p+ g+ 177 (2
Substitute this estimate in (43) and obtain
5 [ 2em \ '
card{sgn(Re b(#,))} <4"(4s)(p + q + 1" (PTQ) ) (44)

Set © = 200d°. We choose the numbers 7, s, p, ¢ such that
m<s"'<2m, p=nd*, q= n(2s+d+1), s’ <m<ers?,
and p + ¢g<m/2. A direct computation leads to
card{sgn(Re b(R,))} <2°™/2,

Lemma 8.2 is proved. [

10. Uncited references
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Appendix A

We discuss some well-known results pertaining to orthogonal polynomials which
we use in the current work.

A.1. The Gegenbauer polynomials

The Gegenbauer polynomials are usually defined via the generating function
(1 =2tz +2%)" ch k,

where |z|<1, |f]<1, and 4>0. The coefficients C{(r) are algebraic polynomials of
degree k and are termed the Gegenbauer polynomials associated with A.

The Gegenbauer polynomials possess the following properties:

The family of polynomials {C,i} is a complete orthogonal system for the weighted

space Ly(I,w), I = [=1,1], w(t) = w; (1) = (1 — 2)*""* and

/ ChL()Ch(tyw(z) dr
I
= {Unm o n,wzth Unj = nt+nr() (A1)

where we use the usual notation (a), =0, (a), =a(a+1)---(a+ N —1).

A.2. An orthogonal system of polynomials on the sphere

We state some facts (see [43,48]) from the theory of harmonic analysis on the
sphere. Let s be any positive integer. Consider the space H;‘Om consisting of the
homogeneous harmonic polynomials of degree s in the d variables xi, ..., x;. Any
polynomial from H"™ is decomposable as a linear combination of polynomials of
the form

lj—kj1+1 B2k (Xa .
hy(x) = skH e Co2r (—")(xzilxl)k“7 (A.2)

Td—j

where 12 = = X4+ xf,fj. The vector k with integer coordinates belongs to the set

K ={k = (ko,ki, ..., kq—3,ekq—2) : 0<ky_»
<o <ki<ko=s, 6= £1},
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and Ay is the normalization factor

1 d-3
Age =——
¢ rwm>£!

221 td =4 (e — ki) (d — j + 2k; — 2T (S52 + ko)
Val(kj+ ki +d —j—2) .

It is known that the dimension of the space H'"™ is given by

d—1 d-3
dﬁnfwm“:|Kq::<s+ >__<S+ ), (A3)
: s s—2

X

if s>2, and dimH}°™ = 1, dimH™ = d. It is easy to verify that the dimension of
HM™ is asymptotically given by

dim HM™ = (2 +ﬁ+ c(s, d))s(s—i— o (s+d—3)=s2, (A4)

where 0<¢(s,d) <1 is some function depending only on s and d.
The family of functions {Ag}, g is an orthonormal system in the space L,(S?™!),
i.e., for any multi-indices k, k' € K*, the following holds

(hs hyger) = ) hoe(E)hge (&) dE = S
§d-1

Note that the spaces H'™™ and H°™ for s#s are orthogonal space on S?~!. The
family of functions .2, {/s };cxs is @ complete orthonormal system in the space
Lz(Sdil).

The set of polynomials on the sphere {p:pe?,} of degree <n belongs to the
space H o@D A 1@ -+ DA, which is the direct sum of the orthogonal subspaces
Hbom phom | H'm From the above it follows that for any polynomial pe 2, and
for any function he HT @ H'T @ --- the equality

|, pem@ac o (A5)

holds.
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